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The use of classical Lax–Friedrichs Riemann solvers
with discontinuous Galerkin methods
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SUMMARY

While conducting a von Neumann stability analysis of discontinuous Galerkin methods we discovered
that the classic Lax–Friedrichs Riemann solver is unstable for all time-step sizes. We describe a simple
modi�cation of the Riemann solver’s dissipation returns the method to stability. Furthermore, the method
has a smaller truncation error than the corresponding method with an upwind �ux for the RK2-DG(1)
method. These results are veri�ed upon testing. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Lax–Friedrichs (LxF) Riemann solvers are commonly used to enhance the robustness of
Godunov-type methods [1]. Furthermore, LxF is the basis of much recent algorithm develop-
ment starting with a second-order successor to LxF [2]. Here, we present numerical stability
analysis and computations that demonstrate some subtle aspects to the use of LxF Riemann
solvers with discontinuous Galerkin (DG) methods. The simplicity and economy of the
resulting methods motivate us. Used blindly in one of its classical forms, the method is
linearly unstable, but can be modi�ed to recover numerical stability. Moreover, the modi�ed
method has a smaller truncation error than its upwind counterpart for a second-order accurate
method.
We have conducted a set of numerical stability analyses of DG methods covering a variety

of time-integration schemes ranging from fully discrete to semi-discrete forms. In the presen-
tation of semi-discrete schemes (often referred to as method of lines), the time di�erencing is
not speci�ed, but the spatial di�erencing is given. We followed the earlier analysis techniques
of Lowrie [3]. While the analysis recovered the expected results for a variety of methods
using classical upwinding as a Riemann solver, the use of the classic LxF Riemann solver
produced a linearly unstable method (see Section 2). This was con�rmed upon application of
the method to a simple wave equation and subsequently on Burgers’ equation as well.
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Combining Godunov methods and �nite element methods is an attractive approach for
solving hyperbolic conservation laws. Such a combination is found with DG methods where
a discontinuous basis is used in the Galerkin approximation. This method is rather natural
for approximating weak solutions. As a necessity for resolving the discontinuities at element
boundaries Riemann solvers are employed to determine a unique inter-element �ux. In
addition, DG methods are more compact than typical high-resolution Godunov methods not
requiring extensive memory accesses to surrounding cells or elements. For the purpose of
non-linear limiting and �ux evaluations only nearest neighbors are required.
DG methods were �rst introduced by Reed and Hill [4] for neutron transport. Subsequently,

the method has found far greater use in the hydrodynamics community although Morel and
coworkers have revitalized its use in radiation transport [5]. Key developments were made by
Cockburn and Shu (see Reference [6] for example). Recent work has culminated in a robust,
high-resolution method for conservation laws [7].
Generically, we are interested in solving a conservation law, ut+[f(u)]x=0. In its simplest

form the �nite di�erence equation for updating the conservation law is

@uj
@t
=− 1

�x
[f(uj+1=2)− f(uj−1=2)] (1)

where we have explicitly employed a semi-discrete form. One can write the linear basis for a
DG(1) scheme as uj+ sj(x−xj); x∈ [xj−�x=2; xj+�x=2]. For DG(1) the slope, sj, is updated
using the following:

@sj
@t
=− 6

�x2
[f(uj−1=2) + f(uj+1=2)] +

12
�x2

∫ �x=2

−�x=2
f(u) dx (2)

The DG(2) scheme uses a quadratic basis uj + sj(x − xj) + qj[(x − xj)2 − �x2=12]; x∈
[xj−�x=2; xj+�x=2]. Here, we have made use of a Legendre polynomial basis. The form for
updating sj is retained and the quadratic term, qj, is updated using the following equation:

@qj
@t
=− 30

�x3
[f(uj+1=2)− f(uj−1=2)] + 360

�x3

∫ �x=2

−�x=2
f(u)(x − x0) dx (3)

We use these discrete forms in conducting our stability analysis in Section 2.
We will integrate these methods with Runge–Kutta (RK) methods based on a TVD principle

(more recently referred to a strong stability preserving) [8; 9]. Typically, we will use a second-
order integrator with DG(1). This method for ut =F(u) which is equivalent to Heun’s method
is

un+1 = 1
2(u

n + u1 + �t F(u1)); u1 = un +�t F(un):

With DG(1) this method will be referred to a RK2-DG(1), and we expect second-order
accuracy for su�ciently smooth �ows. With the DG(2) method we will use a third-order
integrator,

un+1 = 1
3(u

n + 2u2 + 2�t F(u2)); u2 = 1
4(3u

n + u1 + �t F(u1))u1 = un +�t F(un):
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With DG(2) this is the RK3-DG(2) method. We expect third-order accuracy with this method.
Next, we discuss Riemann solvers, their formulation and implications for Godunov-type
methods.
In Godunov-type methods, Riemann solvers play an essential role. Because the quest for

correct physical solutions depends crucially on satisfying an entropy condition, su�ciently
dissipative Riemann solutions are important. Exact Riemann solvers (upwind in the scalar
case) are only marginally entropy satisfying. Indeed, it de�nes a bounding case [10]. More
dissipation can be entertained to the limit of a LxF method. It is also important to note that
the LxF method is as dissipative as a stable explicit method can be.
The importance of the dissipative Riemann solvers is in the design of robust numerical

methods. In di�cult circumstance one can use more dissipation via the LxF Riemann solvers
to achieve robustness. This combined with non-linear spatial di�erencing provides a reliable
numerical method for a variety of problems including some of the most challenging in
existence. The Godunov �ux is the least dissipative �ux that satis�es an entropy condition
(an E-�ux, (f(ul; ur)−f(u))(ur−ul)60; u∈ [ul; ur]), and for typical schemes LxF is the most
dissipative �ux that leads to a stable scheme.
In the case of a scalar equation, the basic upwind numerical �ux is

f(ul; ur)=
1
2
(f(ul) + f(ur))− |f′(u)|

2
(ur − ul) (4)

where f′(u) is the characteristic velocity at the interface. The classical LxF �ux changes the
dissipation to an absolute upper bound, �x=�t, this coincides with upwinding at the CFL
limit

f(ul; ur)=
1
2
(f(ul) + f(ur))− �x

2�t
(ur − ul) (5)

Cockburn and Shu [7] usually use a local Lax–Friedrichs (LLxF) method rather than LxF.
In LLxF, the dissipation magnitude in (4), |f′(u)|=max|f′(u)|. The dissipation in (5) is an
upper bound for the dissipation determined in this manner as the CFL number reaches its
limit.
Each of these schemes can be extended to systems of non-linear conservation laws. For

Burgers’ equation the Godunov �ux is used in place of (4)

f(ul; ur)=
1
2
max[max(0; ul)2;min(0; ur)2]

The importance of LxF to the construction of robust numerical schemes cannot be overstated.
LxF provides the ability to securely produce adequate entropy through the numerical �ux. In
the next section, we discuss the stability analysis of DG schemes with the Riemann solvers
discussed above.

2. STABILITY ANALYSIS

In order to investigate the stability of di�erent DG implementations we conducted at stability
analysis using Mathematica and Maple. The analysis follows the form and philosophy detailed
by Lowrie [3]. We develop the method as a �nite di�erence method where more than one
degree of freedom is evolved per mesh cell. For a DG(1) method we have the cell average and
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Figure 1. Comparing RK2 DG(1) with upwind (left) and mLxF (right) Riemann solvers for the relative
damping of the spurious mode compared with the accurate mode.

its moment (or linear expansion coe�cient=slope, sj), for DG(2) we have a second moment
(or parabolic expansion coe�cient, qj). Even for a scalar wave equation, this changes the
stability analysis to a matrix analysis problem. Aside from the matrix analysis details the
analysis is conducted as any other von Neumann stability analysis.
In keeping with this, we describe the update of the variables as Un+1

j (�)= gUn
j (�);U

n
j (�)=

ei�(j+�), where Uj=(uj; sj; qj)T. We also have the exact evolutions for ut+aux=0; st+asx=0,
and qt + aqx=0; U n+1

j (�)= gexactunj (�); gexact = e
i��, where �= a�t=�x is the Courant number.

Because we have more than one unknown per mesh cell, we will have several eigenvalues
describing the stability, 16|g1|¿|g2| for DG(1) and 16|g1|¿|g2|¿|g3| for DG(2). The �rst
eigenvalue describes the accuracy of the solution which can be estimated through g1 − gexact.
We can also describe the amplitude and phase error of the method through expansions of g1.
The di�cult aspect of analysis for DG methods is recognizing the accurate and spurious

modes for the method. One mode is the accurate mode where we wish to examine the accuracy
of the method. For stability, the spurious of non-physical modes must be damped more greatly
than the accurate mode. The spurious mode manifests itself most acutely in what van Leer
refers to as ‘stegasaur bias’ from his 1977 paper [11].
We discovered that the simple modi�cation of the time step used in the mesh spacing to

time step size ratio in the Riemann solver recovers linear stability. This modi�cation consists
of multiplying this ratio by the stability limit for the method. For example, a DG(1) method
with a second-order TVD RK method and the upwind Riemann solver has an explicit stability
limit of 1

3 (
1
5 for RK3) [6]. When we replace the upwind �ux with the standard LxF �ux the

method is unconditionally unstable. The same results holds for DG(2). We modify the LxF
�ux from to

f(ul; ur)=
1
2
(f(ul) + f(ur))− z�x

2�t
(ur − ul) (6)

if z is set equal to the explicit stability limit for the scheme with the upwind �ux, stability for
the method is recovered over the original stability range. This will be denoted as the mLxF
�ux. In Figure 1, we show the relative damping |g1|=|g2| of the two DG(1) schemes. The
mLxF �ux damps the spurious mode less than the upwind scheme.
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Moreover, the truncation error reduces from the case of upwinding being equal to it at the
stability limit, but reducing as the CFL number goes to zero. For RK2-DG(1) with an upwind
�ux the truncation error is −(�3=6)uxxx− 1

72 (�+3�
4)uxxxx. With the mLxF �ux, the RK2-DG(1)

truncation error is −(�3=6)uxxx − 1
24 (�

2 + �4)uxxxx. The scheme with the mLxF �ux has smaller
truncation error for all stable time steps (�¡ 1

3 ). For the RK3-DG(2) schemes the truncation
error estimate is beyond the ability of the symbolic algebra software to compute!

3. TESTING THE STABILITY ANALYSIS

While DG(1) more accurate especially as the Courant number becomes small, the performance
on discontinuous waves appears to be unharmed as shown in Table I and Figure 2. The smaller
error for the Gaussian pulse is evident while the performance on the step is similar. No limiting
is used although their inclusion poses no particular di�culties. The results for RK3-DG(2)
show slight di�erences. The mLxF �ux no longer shows smaller errors, but rather is slightly
larger.
Table II shows that the results found for the scalar wave equation are recovered for Burgers’

equation. The RK2-DG(1) with mLxF produces signi�cantly smaller errors than the upwind
�ux while the solution is smooth. Again, the opposite is true for RK3-DG(2). In broad terms
the order of the schemes is not impacted negatively by the mLxF �ux. Figures 3 and 4 show
the results for two times. The accentuation of the spurious mode by the mLxF �ux is obvious
after the shock forms (at t=1=2�). Here, any oscillations are not localized at the shock be-
cause of the centered nature of mLxF. The greater spurious mode ampli�cation can explain this
behavior. Non-linear limiting removes much of this character from the solution. In both cases,

Table I. Error norms using RK2-DG(1) and RK3-DG(2) with upwind and mLxF Riemann
solvers on advecting a Gaussian for 10 periods.

Scheme Norm Error 20 Rate Error 40 Rate Error 80

RK2-DG(1) upwind L1 3:97× 10−2 2.49 7:06× 10−3 2.73 1:06× 10−3
L2 4:91× 10−2 2.39 9:36× 10−3 2.70 1:44× 10−3
L∞ 1:04× 10−1 2.27 2:16× 10−2 2.69 3:35× 10−3

RK2-DG(1) mLxF L1 1:72× 10−2 2.77 2:53× 10−3 2.09 5:93× 10−4
L2 2:22× 10−2 2.66 3:51× 10−3 2.13 8:01× 10−4
L∞ 4:86× 10−2 2.68 7:56× 10−3 2.15 1:70× 10−3

RK3-DG(2) upwind L1 5:47× 10−4 3.87 3:75× 10−5 2.91 4:99× 10−6
L2 7:55× 10−4 3.95 4:89× 10−5 2.64 7:85× 10−6
L∞ 1:76× 10−3 3.91 1:17× 10−4 1.93 3:06× 10−5

RK3-DG(2) mLxF L1 6:88× 10−4 3.92 4:54× 10−5 3.05 5:47× 10−6
L2 9:28× 10−4 3.97 5:94× 10−5 2.78 8:63× 10−6
L∞ 2:25× 10−3 3.97 1:44× 10−4 1.88 3:90× 10−5
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Figure 2. RK2-DG(1) results for a step function. On the left the results with the upwind �ux is shown
and the right shows the mLxF �ux, and a square wave. The Courant number is 0.1 and the results with
20 cells is shown, for 10 periods around the grid. The solid line shows the reconstruction de�ned by

the scheme and the dashed line shows the exact solution.

Table II. Error norms using RK2-DG(1) and RK3-DG(2) with upwind and mLxF Riemann
solvers on Burgers’ equations at t=0:1 for u(x; 0)= sin 2�x using �=0:1.

Scheme Norm Error 20–40 Rate Error 40–80 Rate Error 80–160

RK2-DG(1) Godunov L1 8:62× 10−4 2.60 1:42× 10−4 2.66 2:25× 10−5
L2 1:49× 10−3 2.20 3:25× 10−4 2.66 5:14× 10−5
L∞ 4:07× 10−3 1.61 1:33× 10−3 2.44 2:45× 10−4

RK2-DG(1) mLxF L1 6:95× 10−4 3.39 6:64× 10−5 3.32 6:64× 10−6
L2 1:89× 10−3 3.50 1:67× 10−4 3.89 1:13× 10−5
L∞ 5:97× 10−3 3.09 7:01× 10−4 3.88 4:77× 10−5

RK3-DG(2) Godunov L1 4:76× 10−5 3.96 3:07× 10−6 3.05 3:71× 10−7
L2 7:03× 10−5 3.79 5:08× 10−6 2.32 1:02× 10−6
L∞ 1:57× 10−4 3.31 1:59× 10−5 1.61 5:21× 10−6

RK3-DG(2) mLxF L1 9:06× 10−5 3.15 1:02× 10−5 3.57 8:58× 10−7
L2 1:74× 10−4 2.85 2:41× 10−5 3.36 2:35× 10−6
L∞ 5:20× 10−4 2.42 9:67× 10−5 3.09 1:14× 10−5

the evolution of the mean values is not adversely e�ected. Indeed, the mean values con-
verge to the correct solution as the mesh is re�ned despite the behaviour of the spurious
modes.
We have found a stability problem with the classical LxF numerical �ux when used in con-

junction with discontinuous Galerkin methods. Fortunately, this di�culty can be easily reme-
died through modifying the numerical �ux function’s dissipation. The numerical behaviour of
the method can be used to explain more general behaviour of results with methods between
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Figure 3. RK2-DG(1) for Burgers’ equation with the Godunov �ux. The solution is shown at t=0:1
when the solution is smooth, and at t=1:0 after the shock forms (at t=1=2�) for u(x; 0)= sin 2�x.

The reconstruction is plotted and the symbols show the cell mean values.

Figure 4. RK2-DG(1) with mLxF �ux for Burgers’ equation.

upwinding and LxF (i.e. LLxF). We also have the pleasant byproduct of reduced trunca-
tion error resulting from this modi�cation of the method for RK2-DG(1). Additionally, we
�nd that the new method does not have degraded performance on discontinuous waves and
shocks.
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