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The use of classical Lax—Friedrichs Riemann solvers
with discontinuous Galerkin methods
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SUMMARY

While conducting a von Neumann stability analysis of discontinuous Galerkin methods we discovered
that the classic Lax—Friedrichs Riemann solver is unstable for all time-step sizes. We describe a simple
modification of the Riemann solver’s dissipation returns the method to stability. Furthermore, the method
has a smaller truncation error than the corresponding method with an upwind flux for the RK2-DG(1)
method. These results are verified upon testing. Copyright © 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Lax—Friedrichs (LxF) Riemann solvers are = commonly used to enhance the robustness of
Godunov-type methods [1]. Furthermore, LxF is the basis of much recent algorithm develop-
ment starting with a second-order successor to LxF [2]. Here, we present numerical stability
analysis and computations that demonstrate some subtle aspects to the use of LxF Riemann
solvers with discontinuous Galerkin (DG) methods. The simplicity and economy of the
resulting methods motivate us. Used blindly in one of its classical forms, the method is
linearly unstable, but can be modified to recover numerical stability. Moreover, the modified
method has a smaller truncation error than its upwind counterpart for a second-order accurate
method.

We have conducted a set of numerical stability analyses of DG methods covering a variety
of time-integration schemes ranging from fully discrete to semi-discrete forms. In the presen-
tation of semi-discrete schemes (often referred to as method of lines), the time differencing is
not specified, but the spatial differencing is given. We followed the earlier analysis techniques
of Lowrie [3]. While the analysis recovered the expected results for a variety of methods
using classical upwinding as a Riemann solver, the use of the classic LxF Riemann solver
produced a linearly unstable method (see Section 2). This was confirmed upon application of
the method to a simple wave equation and subsequently on Burgers’ equation as well.
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Combining Godunov methods and finite element methods is an attractive approach for
solving hyperbolic conservation laws. Such a combination is found with DG methods where
a discontinuous basis is used in the Galerkin approximation. This method is rather natural
for approximating weak solutions. As a necessity for resolving the discontinuities at element
boundaries Riemann solvers are employed to determine a unique inter-element flux. In
addition, DG methods are more compact than typical high-resolution Godunov methods not
requiring extensive memory accesses to surrounding cells or elements. For the purpose of
non-linear limiting and flux evaluations only nearest neighbors are required.

DG methods were first introduced by Reed and Hill [4] for neutron transport. Subsequently,
the method has found far greater use in the hydrodynamics community although Morel and
coworkers have revitalized its use in radiation transport [5]. Key developments were made by
Cockburn and Shu (see Reference [6] for example). Recent work has culminated in a robust,
high-resolution method for conservation laws [7].

Generically, we are interested in solving a conservation law, u,+[ f(u#)], =0. In its simplest
form the finite difference equation for updating the conservation law is
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where we have explicitly employed a semi-discrete form. One can write the linear basis for a
DG(1) scheme as u; +s;(x —x;), x € [x; — Ax/2,x; + Ax/2]. For DG(1) the slope, s;, is updated
using the following:
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The DG(2) scheme uses a quadratic basis u + s;(x — x;) + ¢;[(x — x)* — Ax?/12], x€
[x; — Ax/2,x; + Ax/2]. Here, we have made use of a Legendre polynomial basis. The form for
updating s; is retained and the quadratic term, g;, is updated using the following equation:
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We use these discrete forms in conducting our stability analysis in Section 2.

We will integrate these methods with Runge—Kutta (RK) methods based on a TVD principle
(more recently referred to a strong stability preserving) [8, 9]. Typically, we will use a second-
order integrator with DG(1). This method for u, = F'(u) which is equivalent to Heun’s method
is

=1 ut + AFu))ut =u" + At Fuh).
With DG(1) this method will be referred to a RK2-DG(1), and we expect second-order
accuracy for sufficiently smooth flows. With the DG(2) method we will use a third-order
integrator,

u't = %(u" + 2 + 2At F(1?)); u* = 13U + u' + AtF(u)u' =u" + At F(u").
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With DG(2) this is the RK3-DG(2) method. We expect third-order accuracy with this method.
Next, we discuss Riemann solvers, their formulation and implications for Godunov-type
methods.

In Godunov-type methods, Riemann solvers play an essential role. Because the quest for
correct physical solutions depends crucially on satisfying an entropy condition, sufficiently
dissipative Riemann solutions are important. Exact Riemann solvers (upwind in the scalar
case) are only marginally entropy satisfying. Indeed, it defines a bounding case [10]. More
dissipation can be entertained to the limit of a LxF method. It is also important to note that
the LxF method is as dissipative as a stable explicit method can be.

The importance of the dissipative Riemann solvers is in the design of robust numerical
methods. In difficult circumstance one can use more dissipation via the LxF Riemann solvers
to achieve robustness. This combined with non-linear spatial differencing provides a reliable
numerical method for a variety of problems including some of the most challenging in
existence. The Godunov flux is the least dissipative flux that satisfies an entropy condition
(an E-flux, (f(us,u,)— f(u))(u, —u;)<0,u € [u,u,]), and for typical schemes LxF is the most
dissipative flux that leads to a stable scheme.

In the case of a scalar equation, the basic upwind numerical flux is

Sy = () + )~ L, ) )

where f’(u) is the characteristic velocity at the interface. The classical LxF flux changes the
dissipation to an absolute upper bound, Ax/At, this coincides with upwinding at the CFL
limit

A
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Cockburn and Shu [7] usually use a local Lax—Friedrichs (LLxXF) method rather than LxF.
In LLxF, the dissipation magnitude in (4), | f/(u)| =max|f’(u)|. The dissipation in (5) is an
upper bound for the dissipation determined in this manner as the CFL number reaches its
limit.

Each of these schemes can be extended to systems of non-linear conservation laws. For
Burgers’ equation the Godunov flux is used in place of (4)

;) = 3 max[max(0, Y, min(0. 4, ']

The importance of LxF to the construction of robust numerical schemes cannot be overstated.
LxF provides the ability to securely produce adequate entropy through the numerical flux. In
the next section, we discuss the stability analysis of DG schemes with the Riemann solvers
discussed above.

2. STABILITY ANALYSIS

In order to investigate the stability of different DG implementations we conducted at stability
analysis using Mathematica and Maple. The analysis follows the form and philosophy detailed
by Lowrie [3]. We develop the method as a finite difference method where more than one
degree of freedom is evolved per mesh cell. For a DG(1) method we have the cell average and

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:479-486



482 W. J. RIDER AND R. B. LOWRIE

Figure 1. Comparing RK2 DG(1) with upwind (left) and mLxF (right) Riemann solvers for the relative
damping of the spurious mode compared with the accurate mode.

its moment (or linear expansion coefficient/slope, s;), for DG(2) we have a second moment
(or parabolic expansion coefficient, g;). Even for a scalar wave equation, this changes the
stability analysis to a matrix analysis problem. Aside from the matrix analysis details the
analysis is conducted as any other von Neumann stability analysis.

In keeping with this, we describe the update of the variables as qn“(é) =gU"(&); U"(¢) =
el%U*<), where U = (u;,s;,4;)". We also have the exact evolutions for u,+au, =0, s,+as, =0,
and ¢; + aq, =0, l{»’”’l(f) = Gexactt] (€); Gexact = e"?, where v=aAt/Ax is the Courant number.
Because we have more than one unknown per mesh cell, we will have several eigenvalues
describing the stability, 1<|g;|>]|g.| for DG(1) and 1<|g|>]g2| =1g3| for DG(2). The first
eigenvalue describes the accuracy of the solution which can be estimated through ¢, — gexact-
We can also describe the amplitude and phase error of the method through expansions of g;.

The difficult aspect of analysis for DG methods is recognizing the accurate and spurious
modes for the method. One mode is the accurate mode where we wish to examine the accuracy
of the method. For stability, the spurious of non-physical modes must be damped more greatly
than the accurate mode. The spurious mode manifests itself most acutely in what van Leer
refers to as ‘stegasaur bias’ from his 1977 paper [11].

We discovered that the simple modification of the time step used in the mesh spacing to
time step size ratio in the Riemann solver recovers linear stability. This modification consists
of multiplying this ratio by the stability limit for the method. For example, a DG(1) method
with a second-order TVD RK method and the upwind Riemann solver has an explicit stability
limit of (4 for RK3) [6]. When we replace the upwind flux with the standard LxF flux the
method is unconditionally unstable. The same results holds for DG(2). We modify the LxF
flux from to

zAx

F )= @)+ f )~ Sy — ) (6)

if z is set equal to the explicit stability limit for the scheme with the upwind flux, stability for
the method is recovered over the original stability range. This will be denoted as the mLxF
flux. In Figure 1, we show the relative damping |g;|/|g.| of the two DG(1) schemes. The
mLxF flux damps the spurious mode less than the upwind scheme.
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Moreover, the truncation error reduces from the case of upwinding being equal to it at the
stability limit, but reducing as the CFL number goes to zero. For RK2-DG(1) with an upwind
flux the truncation error is —(v*/6 )ity — =5 (V+3V* )ttyrry. With the mLxF flux, the RK2-DG(1)
truncation error is —(v}/6)uxy — 57 (V? + *)utxer. The scheme with the mLxF flux has smaller
truncation error for all stable time steps (v< %). For the RK3-DG(2) schemes the truncation
error estimate is beyond the ability of the symbolic algebra software to compute!

3. TESTING THE STABILITY ANALYSIS

While DG(1) more accurate especially as the Courant number becomes small, the performance
on discontinuous waves appears to be unharmed as shown in Table I and Figure 2. The smaller
error for the Gaussian pulse is evident while the performance on the step is similar. No limiting
is used although their inclusion poses no particular difficulties. The results for RK3-DG(2)
show slight differences. The mLxF flux no longer shows smaller errors, but rather is slightly
larger.

Table II shows that the results found for the scalar wave equation are recovered for Burgers’
equation. The RK2-DG(1) with mLxF produces significantly smaller errors than the upwind
flux while the solution is smooth. Again, the opposite is true for RK3-DG(2). In broad terms
the order of the schemes is not impacted negatively by the mLxF flux. Figures 3 and 4 show
the results for two times. The accentuation of the spurious mode by the mLxF flux is obvious
after the shock forms (at #=1/2%). Here, any oscillations are not localized at the shock be-
cause of the centered nature of mLxF. The greater spurious mode amplification can explain this
behavior. Non-linear limiting removes much of this character from the solution. In both cases,

Table I. Error norms using RK2-DG(1) and RK3-DG(2) with upwind and mLxF Riemann
solvers on advecting a Gaussian for 10 periods.

Scheme Norm Error 20 Rate Error 40 Rate Error 80

RK2-DG(1) upwind L 397x107% 249  706x107° 273  1.06x107°
L, 491%x107%2 239  936x107% 270 144x107°
Loo 1.04x 107" 227  216x1072 269 335x107°

RK2-DG(1) mLxF L 172x107% 277  253x107> 209 593x107*

L, 222x1072 266 351x107% 213 801x107*
Loo 486%x1072 268 756x1073  2.15 1.70 x 1073

RK3-DG(2) upwind L 547x107% 387 375x107° 291  499x10°°
L, 755%x 107 395 489x107° 264 7.85x107°°
Loo 1.76 x 1073 3.91 1.17x107* 193  3.06x10°°

RK3-DG(2) mLxF L 688x107*% 392 454x107° 3.05 547x107°
L, 928 x 107 397 594x10° 278 863x107°°
Loo 225%x 107 397  144x107* 188 390x10°
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Figure 2. RK2-DG(1) results for a step function. On the left the results with the upwind flux is shown

and the right shows the mLxF flux, and a square wave. The Courant number is 0.1 and the results with

20 cells is shown, for 10 periods around the grid. The solid line shows the reconstruction defined by
the scheme and the dashed line shows the exact solution.

Table II. Error norms using RK2-DG(1) and RK3-DG(2) with upwind and mLxF Riemann
solvers on Burgers’ equations at  =0.1 for u(x,0)= sin 2nx using v=0.1.

Scheme Norm  Error 20-40 Rate  Error 40-80 Rate  Error 80—160

RK2-DG(1) Godunov  L; 8.62x 107* 260 142x107* 266 225x107°
L, 149x107° 220 325x107* 266 514x10°°
Loo 407%x107%  1.61 133x1073 244 245x107*

RK2-DG(1) mLxF L 695x10™* 339 664x107° 332  6.64x107°
Ly 189x107° 350 1.67x107* 389 1.13x10°°
Loo 597x 107 3.09 701x107* 388 477x107°

RK3-DG(2) Godunov L 476x 107> 396 3.07x107° 3.05 3.71x1077
Ly 703x107° 379 508x107% 232 1.02 x 107°
Loo 157x107% 331  159x107° 1.6l 521x107°¢

RK3-DG(2) mLxF L 9.06x107° 3.15 1.02x107° 357 858 x 107’
L, 1.74x107* 285 241x107° 336 235x107°
Loo 520x107% 242  967x107> 3.09 1.14x10°°

the evolution of the mean values is not adversely effected. Indeed, the mean values con-
verge to the correct solution as the mesh is refined despite the behaviour of the spurious
modes.

We have found a stability problem with the classical LxF numerical flux when used in con-
junction with discontinuous Galerkin methods. Fortunately, this difficulty can be easily reme-
died through modifying the numerical flux function’s dissipation. The numerical behaviour of
the method can be used to explain more general behaviour of results with methods between
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Figure 3. RK2-DG(1) for Burgers’ equation with the Godunov flux. The solution is shown at r=0.1
when the solution is smooth, and at t=1.0 after the shock forms (at t=1/2x) for u(x,0)= sin 27x.
The reconstruction is plotted and the symbols show the cell mean values.
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Figure 4. RK2-DG(1) with mLxF flux for Burgers’ equation.

upwinding and LxF (i.e. LLxF). We also have the pleasant byproduct of reduced trunca-
tion error resulting from this modification of the method for RK2-DG(1). Additionally, we
find that the new method does not have degraded performance on discontinuous waves and
shocks.
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